Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance☆
نویسندگان
چکیده
OBJECTIVE Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis. METHOD White and brown adipocyte-deficient (Hig2fl/fl × Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2fl/fl × Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process. RESULTS Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2fl/fl × Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes. CONCLUSIONS We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that Hig2 deficiency triggers a deleterious endocrine or neuroendocrine pathway emanating from brown/beige fat cells.
منابع مشابه
Disruption of Hypoxia-Inducible Factor 1 in Adipocytes Improves Insulin Sensitivity and Decreases Adiposity in High-Fat Diet–Fed Mice
OBJECTIVE Obesity, insulin resistance, and type 2 diabetes form a tightly correlated cluster of metabolic disorders in which adipose is one of the first affected tissues. The role of hypoxia and hypoxia-inducible factor 1 (HIF1) in the development of high-fat diet (HFD)-induced obesity and insulin resistance was investigated using animal models. RESEARCH DESIGN AND METHODS Mice with adipocyte...
متن کاملHypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice
Obesity is associated with local tissue hypoxia and elevated hypoxia-inducible factor 1 alpha (HIF-1α) in metabolic tissues. Prolyl hydroxylases (PHDs) play an important role in regulating HIF-α isoform stability. In the present study, we investigated the consequence of whole-body PHD1 gene (Egln2) inactivation on metabolic homeostasis in mice. At baseline, PHD1-/- mice exhibited higher white a...
متن کاملImportance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance.
We examined the involvement of adipocyte cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2)-prostaglandin E receptor (EP)3-mediated signaling during hypertrophy and hypoxia in the development of obesity-associated adipose tissue (AT) inflammation and insulin resistance. The experiments were conducted with high-fat diet (HFD)-induced obese rats, db/db mice, human subjects, and 3T3-L1 and the h...
متن کاملTargeted overexpression of inducible 6-phosphofructo-2-kinase in adipose tissue increases fat deposition but protects against diet-induced insulin resistance and inflammatory responses.
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adip...
متن کاملAdipocyte Metrnl Antagonizes Insulin Resistance Through PPARg Signaling
Adipokines play important roles in metabolic homeostasis and disease. We have recently identified a novel adipokine Metrnl, also known as Subfatin, for its high expression in subcutaneous fat. Here, we demonstrate a prodifferentiation action of Metrnl in white adipocytes. Adipocyte-specific knockout of Metrnl exacerbates insulin resistance induced by high-fat diet (HFD), whereas adipocyte-speci...
متن کامل